Solution properties of the incompressible Euler system with rough path advection
نویسندگان
چکیده
The present paper aims to establish the local well-posedness of Euler's fluid equations on geometric rough paths. In particular, we consider Euler for incompressible flow an ideal whose Lagrangian transport velocity possesses additional rough-in-time, divergence-free vector field. recent work, have demonstrated that this system can be derived from Clebsch and Hamilton-Pontryagin variational principles possess a perturbative path Lie-advection constraint. paper, prove in L2-Sobolev spaces Hm with integer regularity m≥⌊d/2⌋+2 Beale-Kato-Majda (BKM) blow-up criterion terms Lt1Lx∞-norm vorticity. dimension two, show Lp-norms vorticity are conserved, which yields global Wong-Zakai approximation theorem stochastic version equation.
منابع مشابه
control of the optical properties of nanoparticles by laser fields
در این پایان نامه، درهمتنیدگی بین یک سیستم نقطه کوانتومی دوگانه(مولکول نقطه کوانتومی) و میدان مورد مطالعه قرار گرفته است. از آنتروپی ون نیومن به عنوان ابزاری برای بررسی درهمتنیدگی بین اتم و میدان استفاده شده و تاثیر پارامترهای مختلف، نظیر تونل زنی(که توسط تغییر ولتاژ ایجاد می شود)، شدت میدان و نسبت دو گسیل خودبخودی بر رفتار درجه درهمتنیدگی سیستم بررسی شده اشت.با تغییر هر یک از این پارامترها، در...
15 صفحه اولGeometric Properties and Nonblowup of 3D Incompressible Euler Flow∗
has been one of the most outstanding open problems. It plays a very important role in understanding the core problems in hydrodynamics such as the onset of turbulence (people have also tried to understand turbulence through studying weak solutions; see Scheffer, 1993 or Shnirelman, 1997). Much effort has been made to answer this question; see, e.g., Beale et al. (1984), Ebin et al. (1970), Cafl...
متن کاملVariational models for the incompressible Euler equations
where ν is the unit exterior normal to ∂D. If v = (v, . . . , v) : [0, T ] ×D → R, then (adopting the summation convention) div v = ∂jv is the spatial divergence of v, ∇v is the spatial gradient, and ( v · ∇ ) v is the vector in R whose i-th component is given by v∂jv . Hence, (1.1) is a system of (d + 1) equations for the (d + 1) unknowns (v, . . . , v, p), where p : [0, T ] ×D → R physically ...
متن کاملThe Solution of Laminar Incompressible Flow Equation with Free Surfaces in Curvilinear Coordinates
In this paper a novel numerical approach is presented for solving the transient incompressible fluid flow problems with free surfaces in generalized two-dimensional curvilinear coordinate systems. Solution algorithm is a combination of implicit real-time steps and explicit pseudo-time steps. Governing fluid flow equations are discretized using a collocated finite-volume mesh. Convective terms a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 2022
ISSN: ['0022-1236', '1096-0783']
DOI: https://doi.org/10.1016/j.jfa.2022.109632